Localized pinning states in closed containers: Homoclinic snaking without bistability.

نویسندگان

  • Isabel Mercader
  • Oriol Batiste
  • Arantxa Alonso
  • Edgar Knobloch
چکیده

Binary mixtures with a negative separation ratio are known to exhibit time-independent spatially localized convection when heated from below. Numerical continuation of such states in a closed two-dimensional container with experimental boundary conditions and parameter values reveals the presence of a pinning region in Rayleigh number with multiple stable localized states but no bistability between the conduction state and an independent container-filling state. An explanation for this unusual behavior is offered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic snaking in bounded domains.

Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of ho...

متن کامل

Snaking and isolas of localized states in bistable discrete lattices

We consider localized states in a discrete bistable Allen-Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localized states is made possible by pinning to the underlying lattice; they do not exist in the equivalent continuum equation. In particular we address the existence of ‘isolas’: closed curves of ...

متن کامل

Orientation-Dependent Pinning and Homoclinic Snaking on a Planar Lattice

We study homoclinic snaking of one-dimensional, localized states on two-dimensional, bistable lattices via the method of exponential asymptotics. Within a narrow region of parameter space, fronts connecting the two stable states are pinned to the underlying lattice. Localized solutions are formed by matching two such stationary fronts back-to-back; depending on the orientation relative to the l...

متن کامل

Forced Snaking

We study spatial localization in the real subcritical Ginzburg-Landau equation ut = m0u + Q(x)u + uxx + d|u|u − |u|u with spatially periodic forcing Q(x). When d > 0 and Q ≡ 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u = u0 with stationary localized structures which accumulate at the Maxwell pointm0 = −3d/16. When spatial forcing is i...

متن کامل

Influence of boundaries on localized patterns.

We analytically study the influence of boundaries on distant localized patterns generated by a Turing instability. To this end, we use the Swift-Hohenberg model with arbitrary boundary conditions. We find that the bifurcation diagram of these localized structures generally involves four homoclinic snaking branches, rather than two for infinite or periodic domains. Second, steady localized patte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009